Перейти в оглавление выпуска:
Zhizn Zemli [Life of the Earth] 47, no 1
Go to the issue table of contents:
Zhizn Zemli [Life of the Earth] 47, no 1

Данные статьи

Description

DOI

10.29003/m4376.0514-7468.2025_47_1/20-33

Авторы:

Authors:

Bogoliubskii, V.A., Dubinin, E.P., Grokholsky, A.L.

Ключевые слова:

Keywords:

physical modeling, slow spreading, mantle plumes, South Atlantic, transform faults, non-transform discontinuities, overlapping spreading centers.

Скачать pdf статьи:

Download the article:

Ссылка для цитирования:

For citation:

Bogoliubskii, V.A., Dubinin, E.P., Grokholsky, A.L. “Relief and contemporary structure of the Southern Mid-Atlantic Ridge”, Zhizn Zemli [Life of the Earth] 47, no 1, 20–33 (2025) (in Russ., abstr. in Engl.). DOI: 10.29003/m4376.0514-7468.2025_47_1/20-33

Relief and contemporary structure of the Southern Mid-Atlantic Ridge

The considered part of the Mid-Atlantic Ridge extends from the Agulhas-Falkland fracture zone to the Bouvet triple junction. This segment has a contrasting topography. In its southern part, it has the morphology of an axial rise, while in its middle part it has the morphology typical for a slow-spreading rift valley. In the northern part, an area with transitional morphology can be distinguished. Three morphostructural complexes of transverse faults are distinguished, approximately corresponding to areas with various morphology. Such a different structure and segmentation of the spreading ridge became possible owing to the thermal influence of the Shona and Bouvet mantle plumes in the southern part of the considered segment and the Discovery mantle plume in its northern part. To reconstruct the morphostructure formation conditions in the ridge axial zone, physical modeling was implemented. In our experiments, we obtained various relief types and transverse discontinuities complexes depending on the distance from the thermal anomaly. They match the natural morphostructures. The modeling results suppose that the main formation conditions of the contemporary Mid-Atlantic Ridge terrain are spreading obliquity, thermal anomaly intensity, and the plume center position relatively to the spreading axis.

Список литературы

  1. Grokholsky, A.L., Dubinin, E.P., “Structure formation in rift zones and transverse discontinuities of the spreading axes by the results of physical modeling”, Fizika Zemli 5, 49–55 (2010) (in Russian).
  2. Dubinin, E.P., Sushchevskaya, N.M., Grokholsky, A.L., “The history of the South Atlantics spreading ridges development and the time-space position of the Bouvet triple connection”, Rossiyskiy zhurnal nauk o Zemle 1, no 5, 423–443 (1999) (in Russian).
  3. Dubinin, E.P., Chupakhina, A.I., Grokholsky, A.L., “Physical Modeling of the Formation of the Meteor and Islas Orcadas Rises (South Atlantic)”, Okeanologiya 63, no 3, 482–491 (2023) (in Russian).
  4. Kirdyashkin, A.A., Kirdyashkin, A.G., Simonov, V.A., Buslov, M.M., Kotlyarov, A.V., “The Bouvet Plume: Parameters, Evolution, and Interaction with the Triple Junction of Mid-Ocean Ridges in the South Atlantic”, Geologiya i geofizika 64, no 10, 1497–1509 (2023) (in Russian)
  5. Kokhan, A.V., Dubinin, E.P., Grokholsky, A.L., “Geodynamical peculiarities of structure formation in the Arctic and Polar Atlantic spreading ridges”, Vestnik KRAUNC. Nauki o Zemle 1, no 19, 59–77 (2012) (in Russian).
  6. Peyve, A.A., Perfil’ev, A.S., Pushcharovsky, Yu.M., Simonov, V.A., Turko, N.N., Raznitsin, Yu.N., “The structure of the area of the Southern Mid-Atlantic Ridge end (Bouvet triple junction)”, Geotektonika 1, 40–57 (1995) (in Russian)
  7. Peyve, A.A., Skolotnev, S.G., “Peculiarities of volcanism and geodynamics of the Bouvet triple junction area (based on the basalt content)”, Rossiyskiy zhurnal nauk o Zemle 3, no 1, 37–67 (2001) (in Russian).
  8. Pushcharovsky, Yu.M., “Tectonics and geodynamics of the South Atlantic spreading ridges”, Geotektonika 4, 41–52 (1998) (in Russian)
  9. Pushcharovsky, Yu.M., The main tectonic features of the South Atlantic (Moscow: GEOS, 2002) (in Russian)
  10. Chupakhina, A.I., Dubinin, E.P., Grokholsky, A.L., Ryzhova, D.A., Bulychev, A.A., “Physical modeling of the segmentation of the axial zone of the southern segment of the Mid-Atlantic Ridge”, Vestnik Voronezhskogo gos. universiteta. Seriya: Geologiya 3, 89–98 (2022) (in Russian).
  11. Shemenda, A.I., “Similarity criteria at the mechanic modeling of the tectonic processes”, Geologiya i geofizika 10, 10–19 (1983) (in Russian).
  12. De Mets, C., Gordon, R.G., Argus, D.F., “Geologically current plate motions”, Geophysical J. International 181 (1), 1–80 (2010).
  13. Hoernle, K., Schwindrofska, A., Werner, R., van den Bogaard, P., Hauff, P., Uenzelmann-Neben, G., Garbe-Schönberg, D., “Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone”, Geology 44, no 4, 263–266.
  14. Le Roux, P.J., The Geochemistry of Selected Mid-Ocean Ridge Basalts from The Southern Mid-Atlantic Ridge (40°–55°S). PhD thesis (2000).
  15. Le Roex, A., Class, C., O’Connor, J., Jokat, W., “Shona and Discovery Aseismic Ridge Systems, South Atlantic: Trace Element Evidence for Enriched Mantle Sources”, J. of Petrology 51, no 10, 2089–2120 (2010).
  16. Ligi, M., Bonatti, E., Bortoluzzi, G., Carrara, G., Fabretti, P., Gilod, D., Peyve, A.A., Skolotnev, S., Turko, N., “Bouvet Triple Junction in the South Atlantic: Geology and evolution”, J. of Geophysical Research 104, no B12, 29, 365–29, 385 (1999).
  17. Meyer, B., Saltus, R., Chulliat, A., EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX.
  18. O’Connor, J.M., Jokat, W., le Roex, A.P., Class, C., Wijbrans, R., Kuiper, K.F., Nebel, O., “Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes”, Nature Geosci 5, 735–738 (2012).
  19. Parnell-Turner, R., “Earthquake Seismicity Reveals the Location and Significance of the Shona Mantle Plume in the South Atlantic Ocean”, Geophys. Res. Letters 11 (51) (2024). e2024GL109738.
  20. Ryan, W.B.F., Carbotte, S.M., Coplan, J., O’Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R., “Global Multi-Resolution Topo­graphy (GMRT) synthesis data set”, Geochem. Geophys. Geosyst. 10. Q03014 (2009).
  21. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., “New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure”, Science 346, no 6205, 65–67 (2014).
  22. Shemenda, A.I., Grokholsky, A.L., “A formation and evolution of overlapping spreading centers (constrained on the basis of physical modelling)”, Tectonophysics 199, 389–404 (1991).
  23. Shemenda, A.I., Grocholsky, A.L., “Physical modeling of slow seafloor spreading”, J. Geophys. Res. 99, 9137–9153 (1994).

References

  1. Grokholsky, A.L., Dubinin, E.P., “Structure formation in rift zones and transverse discontinuities of the spreading axes by the results of physical modeling”, Fizika Zemli 5, 49–55 (2010) (in Russian).
  2. Dubinin, E.P., Sushchevskaya, N.M., Grokholsky, A.L., “The history of the South Atlantics spreading ridges development and the time-space position of the Bouvet triple connection”, Rossiyskiy zhurnal nauk o Zemle 1, no 5, 423–443 (1999) (in Russian).
  3. Dubinin, E.P., Chupakhina, A.I., Grokholsky, A.L., “Physical Modeling of the Formation of the Meteor and Islas Orcadas Rises (South Atlantic)”, Okeanologiya 63, no 3, 482–491 (2023) (in Russian).
  4. Kirdyashkin, A.A., Kirdyashkin, A.G., Simonov, V.A., Buslov, M.M., Kotlyarov, A.V., “The Bouvet Plume: Parameters, Evolution, and Interaction with the Triple Junction of Mid-Ocean Ridges in the South Atlantic”, Geologiya i geofizika 64, no 10, 1497–1509 (2023) (in Russian)
  5. Kokhan, A.V., Dubinin, E.P., Grokholsky, A.L., “Geodynamical peculiarities of structure formation in the Arctic and Polar Atlantic spreading ridges”, Vestnik KRAUNC. Nauki o Zemle 1, no 19, 59–77 (2012) (in Russian).
  6. Peyve, A.A., Perfil’ev, A.S., Pushcharovsky, Yu.M., Simonov, V.A., Turko, N.N., Raznitsin, Yu.N., “The structure of the area of the Southern Mid-Atlantic Ridge end (Bouvet triple junction)”, Geotektonika 1, 40–57 (1995) (in Russian)
  7. Peyve, A.A., Skolotnev, S.G., “Peculiarities of volcanism and geodynamics of the Bouvet triple junction area (based on the basalt content)”, Rossiyskiy zhurnal nauk o Zemle 3, no 1, 37–67 (2001) (in Russian).
  8. Pushcharovsky, Yu.M., “Tectonics and geodynamics of the South Atlantic spreading ridges”, Geotektonika 4, 41–52 (1998) (in Russian)
  9. Pushcharovsky, Yu.M., The main tectonic features of the South Atlantic (Moscow: GEOS, 2002) (in Russian)
  10. Chupakhina, A.I., Dubinin, E.P., Grokholsky, A.L., Ryzhova, D.A., Bulychev, A.A., “Physical modeling of the segmentation of the axial zone of the southern segment of the Mid-Atlantic Ridge”, Vestnik Voronezhskogo gos. universiteta. Seriya: Geologiya 3, 89–98 (2022) (in Russian).
  11. Shemenda, A.I., “Similarity criteria at the mechanic modeling of the tectonic processes”, Geologiya i geofizika 10, 10–19 (1983) (in Russian).
  12. De Mets, C., Gordon, R.G., Argus, D.F., “Geologically current plate motions”, Geophysical J. International 181 (1), 1–80 (2010).
  13. Hoernle, K., Schwindrofska, A., Werner, R., van den Bogaard, P., Hauff, P., Uenzelmann-Neben, G., Garbe-Schönberg, D., “Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone”, Geology 44, no 4, 263–266.
  14. Le Roux, P.J., The Geochemistry of Selected Mid-Ocean Ridge Basalts from The Southern Mid-Atlantic Ridge (40°–55°S). PhD thesis (2000).
  15. Le Roex, A., Class, C., O’Connor, J., Jokat, W., “Shona and Discovery Aseismic Ridge Systems, South Atlantic: Trace Element Evidence for Enriched Mantle Sources”, J. of Petrology 51, no 10, 2089–2120 (2010).
  16. Ligi, M., Bonatti, E., Bortoluzzi, G., Carrara, G., Fabretti, P., Gilod, D., Peyve, A.A., Skolotnev, S., Turko, N., “Bouvet Triple Junction in the South Atlantic: Geology and evolution”, J. of Geophysical Research 104, no B12, 29, 365–29, 385 (1999).
  17. Meyer, B., Saltus, R., Chulliat, A., EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX.
  18. O’Connor, J.M., Jokat, W., le Roex, A.P., Class, C., Wijbrans, R., Kuiper, K.F., Nebel, O., “Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes”, Nature Geosci 5, 735–738 (2012).
  19. Parnell-Turner, R., “Earthquake Seismicity Reveals the Location and Significance of the Shona Mantle Plume in the South Atlantic Ocean”, Geophys. Res. Letters 11 (51) (2024). e2024GL109738.
  20. Ryan, W.B.F., Carbotte, S.M., Coplan, J., O’Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R., “Global Multi-Resolution Topo­graphy (GMRT) synthesis data set”, Geochem. Geophys. Geosyst. 10. Q03014 (2009).
  21. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., “New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure”, Science 346, no 6205, 65–67 (2014).
  22. Shemenda, A.I., Grokholsky, A.L., “A formation and evolution of overlapping spreading centers (constrained on the basis of physical modelling)”, Tectonophysics 199, 389–404 (1991).
  23. Shemenda, A.I., Grocholsky, A.L., “Physical modeling of slow seafloor spreading”, J. Geophys. Res. 99, 9137–9153 (1994).