Перейти в оглавление выпуска:
Zhizn Zemli [Life of the Earth] 47, no 1
Go to the issue table of contents:
Zhizn Zemli [Life of the Earth] 47, no 1

Данные статьи

Description

DOI

10.29003/m4377.0514-7468.2025_47_1/34-45

Авторы:

Authors:

Fyodorov, V.M., Frolov, D.M., Zalikhanov, A.M.

Ключевые слова:

Keywords:

Earth’ solar climate, variations in incoming solar radiation, radiative heat transfer, insolation contrast, insolation seasonality, Arctic.

Скачать pdf статьи:

Download the article:

Ссылка для цитирования:

For citation:

Fyodorov, V.M., Frolov, D.M., Zalikhanov, A.M., "Solar climate of the Arctic in the Neopleistocene", Zhizn Zemli [Life of the Earth] 47, no 1, 34–45 (2025) (in Russ., abstr. in Engl.). DOI: 10.29003/m4377.0514-7468.2025_47_1/34-45.

Solar climate of the Arctic in the Neopleistocene

Statistical characteristics of changes in the intensity of annual and seasonal irradiation at the upper boundary of the atmosphere of 5-degree latitude zones of the Arctic region in the Late Pleistocene were obtained. No relationship was found between the intensity of annual and seasonal irradiation of 5-degree latitude zones and the eccentricity of the Earth’s orbit, but a positive noticeable relationship was found between the intensity of summer irradiation and a negative relationship between the intensity of winter irradiation and a change in the tilt of the axis and the longitude of the perihelion. The maximum range of variations in winter irradiation intensity in the Arctic with geographic latitude in the Late Pleistocene noticeably (by 10,211 W/ m2) decreases, while the maximum range of variations in summer irradiation intensity with geographic latitude slightly (by 4.3 W/m2) increases. The correlation coefficient of summer irradiation intensity and perihelion longitude in the Late Pleistocene decreases with geographic latitude, and increases with the tilt of the rotation axis. The modulus of the correlation coefficient of winter irradiation intensity with perihelion longitude decreases, and increases with the tilt of the rotation axis. The maximum range of changes in the intensity of annual and seasonal irradiation of 5-degree latitudinal zones by 1–2 orders of magnitude in the Late Pleistocene exceeds the maximum variations in the δ18 O isotope-oxygen analysis of benthic foraminifera, which shows the groundlessness of using its values to solve problems of Late Pleistocene geochronology and climatostratigraphy.

Список литературы

  1. Bakulin, P.I., Kononovich, E.V., Moroz, V.I., Course of General Astronomy (Moscow: Nauka, 1983) (in Russian).
  2. Sachs, L., Statistische Auswertungsmethoden (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
  3. Fyodorov, V.M., Astronomical climatology (Moscow: Moscow University, 2002) (in Russian).
  4. Fyodorov, V.M., Frolov, D.M., Velasco Herrera, N.M., Sun, V.H.V., Sionko, R.G., “Role of the radiation factor in global climatic events of the late Holocene”, Geofizicheskie protsessy i biosfera [Geophysical processes and biosphere] 20 (3), 5–19 (2021). DOI: 10.21455/ GPB 2021.3-1.
  5. Fyodorov, V.M., “Isotopic and solar geochronology and climatostratigraphy of Neopleistocene and Holocene”, Proc. of the XXVIII annual All-Russian conf. “Solar and solar-terrestrial physics – 2024”, 323–326 (St. Petersburg: GAO RAS, 2024), DOI: 10.31725/0552-5829-2024-319-322 (in Russian).
  6. Tsymbalenko, T.T., Baydakov, A.N., Tsymbalenko, O.S., Gladilin, A.V., Methods of mathematical statistics in processing economic information (Moscow: Finances and statistics, 2007) (in Russian).
  7. Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., “The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal”, Earth Planet. Sci. Lett. 126, 91–108 (1994).
  8. Fedorov, V.M., Kostin, A.A., “The Calculation of the Earth’s insolation for the 3000 BC – AD 2999”, Springer Geology 1,181–192 (2020) DOI:10.1007/978-3-030-38177-6_20.
  9. Hays, J.D., Imbrie, J., Shackleton, N., “Variation in the Earth’s orbit: pacemaker of the ice ages”, Science 194, 1121–1132 (1976).
  10. Imbrie, J., Hays, J.D., Martinson, D.G., Mclntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., “The orbital theory of Pleistocene climate: Support from a revised chronology, of the marine δ18O record”, Milankovitch and Climate 1, 269–305 (New York: Springer, 1984).
  11. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., “A long-term numerical solution for the insolation quantities of the Earth”, Astronomy & Astrophysics 428 (1), 261–285 (2004), DOI: 10.1051/0004-6361:20041335.
  12. Laskar, J., Fienga, A., Gastineau, M., Manche, H., “La2010: a new orbital solution for the long-term motion of the Earth”, Astronomy & Astrophysics 532 A89 (2011), DOI: 10.1051/0004-6361/201116836.
  13. Lisiecki, L.E., Raymo, M.E., “A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records”, Paleoceanography 20, PA1003, 1–17 (2005), DOI: 10.1029/2004PA001071.
  14. Malinverno, A., Erba, E., Herbert, T.D., “Orbital tuning an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Gismon APTICORE”, Paleoceanography and Paleoclimatology 25, PA2203 (2010), DOI: 10.1029/2009PA001769.
  15. Petit, J.R., Jouzel, J., Raynaud, D., “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica”, Nature 399, 429–437 (1999).

References

  1. Bakulin, P.I., Kononovich, E.V., Moroz, V.I., Course of General Astronomy (Moscow: Nauka, 1983) (in Russian).
  2. Sachs, L., Statistische Auswertungsmethoden (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
  3. Fyodorov, V.M., Astronomical climatology (Moscow: Moscow University, 2002) (in Russian).
  4. Fyodorov, V.M., Frolov, D.M., Velasco Herrera, N.M., Sun, V.H.V., Sionko, R.G., “Role of the radiation factor in global climatic events of the late Holocene”, Geofizicheskie protsessy i biosfera [Geophysical processes and biosphere] 20 (3), 5–19 (2021). DOI: 10.21455/ GPB 2021.3-1.
  5. Fyodorov, V.M., “Isotopic and solar geochronology and climatostratigraphy of Neopleistocene and Holocene”, Proc. of the XXVIII annual All-Russian conf. “Solar and solar-terrestrial physics – 2024”, 323–326 (St. Petersburg: GAO RAS, 2024), DOI: 10.31725/0552-5829-2024-319-322 (in Russian).
  6. Tsymbalenko, T.T., Baydakov, A.N., Tsymbalenko, O.S., Gladilin, A.V., Methods of mathematical statistics in processing economic information (Moscow: Finances and statistics, 2007) (in Russian).
  7. Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., “The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal”, Earth Planet. Sci. Lett. 126, 91–108 (1994).
  8. Fedorov, V.M., Kostin, A.A., “The Calculation of the Earth’s insolation for the 3000 BC – AD 2999”, Springer Geology 1,181–192 (2020) DOI:10.1007/978-3-030-38177-6_20.
  9. Hays, J.D., Imbrie, J., Shackleton, N., “Variation in the Earth’s orbit: pacemaker of the ice ages”, Science 194, 1121–1132 (1976).
  10. Imbrie, J., Hays, J.D., Martinson, D.G., Mclntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., “The orbital theory of Pleistocene climate: Support from a revised chronology, of the marine δ18O record”, Milankovitch and Climate 1, 269–305 (New York: Springer, 1984).
  11. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., “A long-term numerical solution for the insolation quantities of the Earth”, Astronomy & Astrophysics 428 (1), 261–285 (2004), DOI: 10.1051/0004-6361:20041335.
  12. Laskar, J., Fienga, A., Gastineau, M., Manche, H., “La2010: a new orbital solution for the long-term motion of the Earth”, Astronomy & Astrophysics 532 A89 (2011), DOI: 10.1051/0004-6361/201116836.
  13. Lisiecki, L.E., Raymo, M.E., “A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records”, Paleoceanography 20, PA1003, 1–17 (2005), DOI: 10.1029/2004PA001071.
  14. Malinverno, A., Erba, E., Herbert, T.D., “Orbital tuning an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Gismon APTICORE”, Paleoceanography and Paleoclimatology 25, PA2203 (2010), DOI: 10.1029/2009PA001769.
  15. Petit, J.R., Jouzel, J., Raynaud, D., “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica”, Nature 399, 429–437 (1999).